

Date Page 2021-08-23 1 (16)

Telia Company

Telia IoT Requirements

Version 1.0

I. Introduction

This document constitutes an integral part of the Managed IoT Connectivity Agreement entered by Telia and Customer (the "Agreement") and includes technical requirements for use of the Services.

While a single or small number of misbehaving Devices typically won't impact other users, a large group of Devices operating in a negative pattern consistently or at the same time may have a very adverse impact on network resources and therefore on other users.

Standard mobile Devices on the Telia Network, as well as the applications running on these Devices, must operate in a manner consistent with the requirements specified in this document. Customer is solely responsible for complying with Telia's IoT Technical Requirements. Customer's failure to comply with the requirements, causing disturbances in the Telia Networks or the networks of Telia's roaming partners, may inter alia lead to the suspension of the Service(s).

This document summarizes Telia Company IoT requirements originating in 3GPP, GSMA TS.34 version 7.0, *IoT Device Connection Efficiency Guidelines* ¹, use-cases or features not covered yet within GSMA TS.34, as well as lessons learned gained from IoT commercial deployments. Requirements including the words "SHALL" or "SHALL NOT" in their descriptions are mandatory; all guidelines with "SHOULD" or "SHOULD NOT" are recommended.

This document is divided into four sections, reflecting how IoT Service Providers are required to implement Telia's IoT Requirements and best-practice design in the different IoT Solution Layers (refer to Figure 1).

- Definitions
- IoT Service Provider Requirements (IoT Server Application and Network Service Enablement Layer)
- IoT Device Requirements, covering:
 - Monolithic IoT Device Applications (refer to Figure 1)

These are purpose-built IoT Device Applications that handle both business-specific logic as well as various Service Enablement functionalities (e.g. device management, security, discovery, registration, location, application framework, etc.). These are historically referred to as "M2M Devices" as they are developed to manage assets in a specific, decoupled M2M silo.

¹ https://www.gsma.com/iot/gsma-iot-device-connection-efficiency-guidelines/

Date Page 2021-08-23 2 (16)

Tiered IoT Device Applications (refer to Figure 2)

On the IoT Device, the IoT Device Application may not be monolithic but focus instead only on processes specific to the customer's business. It is developed on top of a separate component which provides numerous generic Service Enablement functionalities (e.g. device management, security, discovery, registration, location, application framework, etc.). This middleware is called the IoT Embedded Service Layer, or Service Enablement Layer. By supporting a common Service Enablement Layer, multiple M2M Devices can be interconnected to the same Cloud Platform enabling an ecosystem (either proprietary or standardized – such as LWM2M or oneM2M) of suppliers and data. This next generation of hardware can be referred to as true "IoT Devices."

- Communication Module Requirements
- Customer's Obligations and Requirements

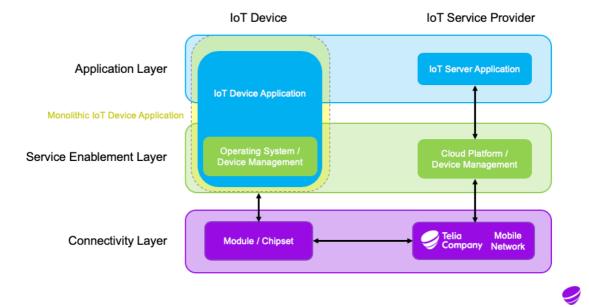


Figure 1: IoT Solution Layers with Monolithic IoT Device Application

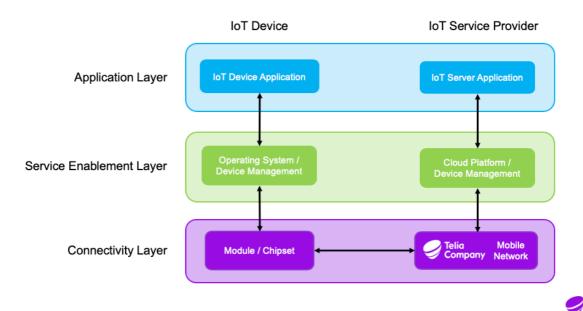


Figure 2: IoT Solution Layers with **Tiered IoT Device Application**

Date Page 2021-08-23 3 (16)

II. Definitions

IoT Service Provider

Companies offering IoT Services to end consumers or enterprises via Telia Company's Connectivity Layer (3GPPTM mobile networks).

IoT Service Application

Business application logic of the IoT Service which processes the data collected from assets. The IoT Service Provider hosts their IoT Service Application on a server or Cloud Platform provided by Telia Company or another third party.

Cloud Platform

Infrastructure used by the IoT Service Provider to host IoT Services, manage IoT Devices and exchange data with their IoT Devices over Telia Company's Connectivity Layer. It may host the IoT Server Application logic and includes Service Enablement functions. Generally, this is referred to as the "IoT Service Platform" in this document.

Service Enablement

Core service functions such as device management, discovery, registration, group management, application and service management, communication management, data management, service charging and accounting, as well as subscription and notification, all of which are common needs across the wide spectrum of IoT solutions. These aspects are typically coordinated between IoT Devices and the IoT Service Platform on this logical layer. Server-side, service enablement may be handled by an independent orchestrator or connector acting as an endpoint for all communication to/from the IoT Devices. Such a connector may be placed in front of one or several clouds hosting IoT Server Applications. The provider of the Service Enablement may be a Mobile (Virtual) Network Operator, or the developer of the IoT Device and Server Applications.

IoT Device

Sensors, actuators, or other deployed Machine to Machine (M2M) hardware exchanging data bidirectionally and managed by the IoT Service Provider over the Application, Service Enablement and Connectivity Layers. The communication between IoT Device and IoT Service Provider is referred to as the IoT Service.

IoT Device Application

The application logic running on the IoT Device's microcontroller (MCU) and exchanging data with the IoT Service Platform. It sends AT commands to the IoT Device's integrated communication module/chipset in order to access Telia Company's Connectivity Layer. The term "monolithic" refers to the handling of both business logic and Service Enablement functionalities within the same IoT Device Application, i.e. without a middleware. Alternatively, in a tiered device the Service Enablement Layer is decoupled to provide Service Enablement separately from the IoT Device Application.

Communication Module

The communications component which provides wide area (2G, 3G, 4G, LPWA and 5G) radio connectivity. comprising of Communications Module Firmware, Radio Baseband Chipset and UICC.

Communication Module Firmware

The functionality within the Communications Module that provides an API to the IoT Device Application and controls the Radio Baseband Chipset.

Over the Air (OTA) Upgrade

Terminology including both Firmware Over the Air (FOTA) and Software Over the Air (SOTA) activities.

Date Page 2021-08-23 4 (16)

Incremental Upgrade

An OTA Upgrade mechanism where only the delta between the new and the old firmware\software is downloaded and flashed.

Push

An operation through which IoT Device Application implemented on IoT Device(s) autonomously sends data (Pushes it) toward IoT Service Platform because it is programmed to do so without the need of any further instructions. This approach provides an efficient implementation when data needs to be sent periodically as an example.

Pull

An operation through which IoT Service Provider or IoT Service Application establishes a communication channel toward IoT Devices requesting them (Pulling them) to send data to IoT Service Platform. This approach provides a better control over critical data sessions like OTA Upgrades as an example.

Mobile IoT

A terminology that is mainly used to refer to Low Power Wide-Area Networks (LPWA).

III. IoT Service Provider Functional Requirements

Avoidance of Synchronized Behavior

Any IoT Service Platform or IoT Server Application which communicate to multiple IoT Devices SHALL avoid synchronized behavior and employ a randomized pattern for accessing IoT Devices registered to the platform's domain. The triggering of data transmissions, the rebooting of the IoT Device hardware or sub-components (such as the communication module/chipset), or the issuing device management commands (including, but not limited to (re-) registrations and firmware updates) SHALL NOT be synchronized. Ref: TS.34 6.0 REQ 001.

Implementation of Randomization

Any IoT Service Platform or IoT Server Application which communicate to multiple IoT Devices SHALL be designed to strive for asynchronous traffic behavior. When IoT Service Platform or IoT Server Application sends mobile terminated traffic to IoT Devices (data and/or SMS and/or voice) or pulls data from them, attempts SHALL be randomized across IoT Devices of the same application both temporally and spatially.

In other words, if IoT Service Platform or IoT Server Application needs to send data to or pull it from IoT Devices at a fixed interval, attempts SHOULD be randomized within at least fifteen (15) percent of the transmission frequency. For example, if the frequency is 60min, IoT Server Application SHOULD use an approx. 10-minutes randomization window.

When it comes to spatial randomization, IoT Server Application SHALL keep track of global cell identities (Cell-ID) where devices are located\connected and apply spatial randomization across these cells whenever data needs to be sent to or pulled from IoT devices.

If IoT Service Platform or IoT Server Application fails to send data or pull it from an IoT Device, then it SHALL introduce a random exponentially increasing back-off timer before it attempts again. The purpose of this is mainly to prevent saturating paging and traffic channels on the radio interface.

Behavior when IoT Service Platform or IoT Server Application Temporarily Offline

If the IoT Service Platform or IoT Server Application are temporarily offline, they SHALL NOT request all IoT Devices to synchronize all at once when it comes back online. Ref: TS.34_4.0_REQ_011, TS.34_4.0_REQ_029.

Date Page 2021-08-23 5 (16)

Triggering Devices only when Attached

The IoT Service Platform or IoT Server Application SHALL be aware of the IoT Device's state and only send "wake up" triggers whenever the IoT Device is known to be attached to the mobile network. Ref: TS.34 6.0 REQ 004.

Behavior when IoT Device does not Respond to SMS Triggers

If the IoT Service Platform or IoT Server Application uses SMS triggers to "wake up" IoT Devices, it SHALL avoid sending multiple SMS triggers when no response is received within a certain period.

Communication over a 3GPP™ NB-IoT access bearer SHALL NOT use SMS on Telia Company's mobile network. Ref: TS.34 6.0 REQ 003.

Behavior when SIM Subscription is Inactive

If the SIM subscription associated with an IoT Device is to be placed in a temporarily inactive state (i.e. for a fixed period of time), the IoT Service Provider SHALL first ensure that the IoT Device's communication module/chipset is temporarily disabled to restrict it from trying to register to the mobile network once the SIM is disabled. Ref: TS.34 6.0 REQ 002.

Behavior when SIM Subscription is Permanently Disabled

Before the SIM subscription associated with an IoT Device is to be placed in a permanently terminated state, the IoT Service Provider SHALL first ensure that the IoT Device's communication module/chipset is permanently disabled to restrict it from trying to register to the mobile network once the SIM is disabled.

The IoT Service Provider SHOULD consider avoiding mechanisms for the permanent termination of IoT Devices that are not easily serviceable, as it may require manual intervention (i.e. a service call) to reenable the IoT Devices. Ref: TS.34 6.0 REQ 002.

Frequency and Prioritization of Data Transmissions

Whenever there is a need to transmit data over the mobile network, the IoT Service Platform or IoT Server Application SHOULD classify the priority of each communication. The IoT Service Platform or IoT Server Application distinguishes between high-priority data requiring instantaneous transmission, versus delay-tolerant or lower-priority data which can be aggregated and sent during non-peak hours. Ref: TS.34_4.0_REQ_018.

IoT Server Applications communicating with IoT Devices over 3GPP™ Mobile IoT access bearers, such as NB-IoT and LTE-M, SHALL optimize their application reporting period to never exceed Telia Company tariff's daily maximum number of messages.

Data Aggregation, Compression and Transcoding

The IoT Server Application SHALL minimize the number of parallel mobile network connections and overall frequency of connections to IoT Devices over the mobile network. Data is aggregated by the IoT Server Application into an application report before being compressed and sent over the mobile network. Data transcoding and compression techniques are used, as per the IoT Service's intended Quality of Service, to reduce connection attempts and data volumes. Ref: TS.34_4.0_REQ_002, TS.34_4.2_REQ_002, TS.34_4.0_REQ_015.

Frequency of Data Transmissions

IoT Server Application using 3GPP[™] Mobile IoT access bearers (such as NB-IoT and LTE-M) SHALL optimize their application reporting period to never exceed Telia Company and its partners tariff's daily maximum number of messages.

Monthly Data Volume

IoT Server Application using 3GPPTM Mobile IoT access bearers (such as NB-IoT and LTE-M) SHALL optimize their payload sizes to comply with Telia Company and its partners monthly volume limits.

Date Page 2021-08-23 6 (16)

Device Initialization

IoT Service Providers SHALL NOT initialize significant numbers of IoT Devices (e.g. >100 units) communicating over 3GPPTM NB-IoT within one hour at the same location.

Over the Air (OTA) Upgrade

The IoT Service Platform or IoT Server Application SHALL support OTA Upgrades for updating the embedded firmware\software of IoT Devices. A recommended file size not greater than 1 MB SHOULD be used and randomized approach for file download SHALL be implemented too. Moreover, OTA Upgrades for IoT Devices communicating over 3GPPTM LPWA radio access technologies, such as NB-IoT and LTE-M, need to consider the following points:

- File compression SHOULD be used where possible
- OTA Upgrades SHALL be performed over LTE-M when file size exceeds that predefined threshold of 1 MB
- Resume functionality SHALL be supported
- Configurable number of downloads in a specific area SHOULD be supported
- Incremental upgrade SHALL be supported
- OTA Upgrade over UDP SHALL be used when IoT Devices are communicating over 3GPPTM NB-IoT radio access technology

IV. IoT Device Functional Requirements

Avoidance of Synchronized Behavior

The monolithic IoT Device Application SHALL avoid synchronized behavior with other IoT Devices or events, employing a randomized pattern (e.g. over period ranging from a few minutes to several hours, or days) to request a mobile network connection over the Connectivity Layer. The triggering of data transmissions, the rebooting of the IoT Device hardware or sub-components (such as the communication module/chipset), or execution of device management commands (including, but not limited to (re-) registrations and firmware updates) SHALL NOT be synchronized. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement these requirements in the same way as for monolithic IoT Device Applications. Ref: TS.34 4.0 REQ 003, TS.34 4.2 REQ 003.

Implementation of Randomization

The monolithic IoT Device Application SHALL be designed to strive for asynchronous traffic behaviour. When a Device connects to the network to access a service (data and/or SMS and/or voice), attempts SHALL be randomized between Devices of the same application both temporally and spatially. In other words, if devices need to upload data to the application server at a fixed interval, attempts SHOULD be randomized within at least fifteen (15) percent of the transmission frequency. For example, if the report frequency is 60min, the device SHOULD use an approx. 10-minutes randomization window.

If an application fails to establish a packet data connection to the network or to its application server, then it SHALL introduce a random exponentially increasing back-off timer before it attempts to connect again. The purpose of this is to prevent a population of Devices all attempting to establish a data connection at the exact same time. The re-attempt SHALL be randomized across the group of Devices.

An example of where this may occur is if Customer's application server fails. If multiple Devices need to communicate with that server and they all make a repeat attempt to access the data service at the same time, they may all be unsuccessful, as the demand for resources may be exceeded, with the result that they then drop into a retry pattern with an effective self-created Denial of Service.

Date Page 2021-08-23 7 (16)

Zero-Byte Session Principle

The monolithic IoT Device Application SHALL only establish data sessions for the purpose of sending and receiving data. An application which establishes a data session and then terminates it without sending data (a "zero-byte session") on a regular basis is not in compliance with Telia's IoT Technical Requirements.

Use of "Always-on" Connectivity

If the monolithic IoT Device Application sends data very frequently (i.e. inactivity periods shorter than two hours), it SHALL use a persistent PDP/PDN connection with the mobile network instead of activating and deactivating said connectivity. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34 4.0 REQ 001, TS.34 4.2 REQ 001.

Handling of "Keep Alive" Messages on Home Network

If the communication between the IoT Devices and mobile network is IP-based, it may require the use of TCP / UDP "keep alive" messages. In such cases, the monolithic IoT Device Application SHALL automatically detect the server-specific timers and/or mobile network firewall timers, such TCP_IDLE value or UDP_IDLE value (NAT timers as defined by Telia Company for consumer APN, or by business enterprise for own-administered NAT, in the case of private APN), when using push services. This is achieved by increasing the polling interval dynamically until a mobile network timeout occurs, and then operating just below the timeout value.

Fixed polling intervals SHALL NOT be used by the monolithic IoT Device Application, as polling interval values change between Telia Company and its partners, and may dynamically adapt with mobile network loading. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement these requirements in the same way as for monolithic IoT Device Applications.

This requirement does not apply to IoT Device Applications communicating with the IoT Server Application over 3GPP[™] Mobile IoT access bearers, such as NB-IoT and LTE-M. Ref: TS.34_4.0_REQ_006, TS.34_4.2_REQ_006, TS.34_4.2_REQ_007.

Monolithic IoT Device Applications communicating with the IoT Server Application over 3GPPTM Mobile IoT access bearers, such as NB-IoT and LTE-M, SHOULD NOT implement TCP / UDP "keep alive" messages on the home network. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD implement this requirement in the same way as for monolithic IoT Device Applications.

Handling of "Keep Alive" Messages on Roaming Network

To minimize the possibility of IP connectivity being lost when camping for extended periods (two hours, or more) on a roaming network – i.e. due to expiration of firewall timers, the monolithic IoT Device Application SHALL periodically (period less than two hours) transmit small amounts of data to the IoT Service Platform via the visited network. A randomized timer triggers this mechanism, ensuring that the simultaneous transmission of data from many IoT Devices via the visited network is avoided. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. This requirement does not apply to IoT Device Applications communicating with the IoT Server Application over 3GPPTM Mobile IoT access bearers, such as NB-IoT and LTE-M.

Monolithic IoT Device Applications communicating with the IoT Server Application over 3GPPTM Mobile IoT access bearers, such as NB-IoT and LTE-M, SHOULD NOT implement TCP / UDP "keep alive" messages on the roaming network. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD implement this requirement in the same way as for monolithic IoT Device Applications.

IoT Service Coordination

If the monolithic IoT Device Application communicates with several IoT Server Applications using the same communication module/chipset, the IoT Device Application SHOULD coordinate the payload transmission of each IoT Service in a way which makes efficient use of the mobile network. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD comply to this requirement.

Date Page 2021-08-23 8 (16)

Data Aggregation, Compression and Transcoding

The monolithic IoT Device Application SHALL minimize the number of parallel mobile network connections and overall frequency of connections between the IoT Device and the mobile network. Data is aggregated by the IoT Device Application into an application report before being compressed and sent over the mobile network. Data transcoding and compression techniques are used, as per the IoT Service's intended Quality of Service, to reduce connection attempts and data volumes. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34_4.0_REQ_002, TS.34_4.2_REQ_002, TS.34_4.0_REQ_015, TS.34_4.2_REQ_015.

Monolithic IoT Devices Applications communicating with IoT Server Applications over 3GPPTM Mobile IoT access bearers, such as NB-IoT and LTE-M, SHALL optimize their payload sizes to comply with Telia Company-tariff monthly or lifetime volume limits. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement.

Monthly Data Volume - IoT Service Provider Defined Limit

The IoT Device Application SHALL monitor the volume of data it sends and receives over a set period. If the volume of data will soon exceed a maximum value defined by the IoT Service Provider or the (prepaid) SIM tariff, the IoT Device Application sends a report to the IoT Service Platform and stops the regular sending of data until the necessary period has expired. Ref: TS.34 4.0 REQ 013, TS.34 4.2 REQ 013.

Prioritization and Frequency of Data Transmissions

Whenever there is a need to transmit data over the mobile network, the monolithic IoT Device Application SHOULD classify the priority of each communication. The IoT Device Application distinguishes between high-priority data requiring instantaneous transmission, versus delay-tolerant or lower-priority data which can be aggregated and sent during non-peak hours. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD consider the information communicated by the IoT Device Application about the importance and urgency of the data to deliver the IoT Service without negatively impacting the network. Ref: TS.34 4.0 REQ 018, TS.34 4.2 REQ 018, TS.34 4.1 REQ 003.

The monolithic IoT Device Application SHALL monitor the number of network connections it attempts over a set period. If the number of connection attempts exceeds a maximum value set by the IoT Service Provider (refer to the Annex: Mobile IoT "No Harm to Network" Policies), the IoT Device Application sends a report to the IoT Service Platform and stops requesting mobile network connectivity until the necessary time period has expired. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34_4.0_REQ_012, TS.34_4.2_REQ_012.

Monolithic IoT Devices Applications communicating with IoT Server Applications over 3GPPTM Mobile IoT access bearers, such as NB-IoT and LTE-M, SHALL optimize their application reporting period to never exceed the IoT Service Provider's daily maximum number of messages (refer to the Annex: Mobile IoT "No Harm to Network" Policies). In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement.

Avoidance of IoT Device "Last-Gasp" Messages

The IoT Device Application SHALL NOT trigger a significant number of IoT Devices (e.g. >100 units) to communicate over the 3GPPTM NB-IoT or LTE-M network simultaneously because of a system-wide failure situation (e.g. regional power outage).

Off-Peak Communication

If allowed by the IoT Service, the monolithic IoT Device Application SHOULD avoid concentrating communication over the mobile network during periods of high utilization. Periods to avoid SHOULD be agreed on with Telia. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD comply to this requirement. Ref: TS.34_4.0_REQ_016, TS.34_4.2_REQ_016.

Date Page 2021-08-23 9 (16)

Localized Communication

The monolithic IoT Device Application SHALL minimize any geographical network loading problems. There SHALL be no coordination of all IoT Devices in a given region of the IoT Service to undergo like-operations producing network loading, e.g. firmware updates. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34 4.0 REQ 017, TS.34 4.2 REQ 017.

Adaption to Mobile Network Capabilities, Data Speed and Latency

The monolithic IoT Device Application SHALL be capable of adapting to changes in mobile network feature capability and service exposure. Furthermore, it is designed to cope with variations in mobile network data speed and latency, considering the differences in available throughput, data speed and latency when switching between different 3GPPTM access bearers (i.e. 2G, 3G, LTE and Mobile IoT).

In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement; the IoT Device Application SHALL be able to retrieve mobile network speed and connection quality information from the Service Enablement Layer in order to request the appropriate quality of content from the IoT Service Platform. Ref: TS.34_4.0_REQ_008, TS.34_4.2_REQ_008, TS.34_4.0_REQ_009, TS.34_4.2_REQ_009.

If data speed and latency is critical to the IoT Service, the monolithic IoT Device Application SHOULD constantly monitor mobile network speed and connection quality to request the appropriate quality of content from the IoT Service Provider's infrastructure. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD constantly monitor mobile network speed and connection quality in order to request the appropriate quality of content from the Cloud Platform. The IoT Device Application its retrieves mobile network speed and connection quality information from the IoT Service Enablement Layer. Ref: TS.34 4.0 REQ 010, TS.34 4.2 REQ 010.

Low Power Mode

If the monolithic IoT Device Application does not need to exchange any data with the IoT Service Platform for a period greater than 24 hours, and the IoT Service can tolerate some latency, the IoT Device SHOULD implement a power-saving mode where the device's communication module/chipset is effectively powered down between data transmissions. This will reduce the IoT Device's power consumption and reduce mobile network signaling. In tiered IoT Devices, the IoT Device Application SHOULD inform its embedded Service Enablement Layer that it does not need to exchange any data with the IoT Service Platform for a period greater than 24 hours, so that the latter can use this information in its interactions with the network. Ref: TS.34_4.0_REQ_020, TS.34_4.2_REQ_020, TS.34_4.1_REQ_004.

Monolithic IoT Device Applications communicating over 3GPPTM Mobile IoT access bearers, such as NB-IoT and LTE-M, SHALL NOT power down their communication module/chipset. The 3GPPTM power saving features SHALL be used instead, thus avoiding power-draining, system selection scanning procedures. PSM T3412 timer values shorter than 60 minutes are not supported. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement this requirement in the same way as for monolithic IoT Device Applications.

Behavior when IoT Service Platform is temporarily Unreachable or Offline

If the monolithic IoT Service Platform is temporarily offline, the IoT Device Application SHALL first diagnose if the communication issues to the server are caused by higher layer communications (TCP/IP, UDP, ATM...). Higher layers mechanisms SHALL then try to re-establish the connection with the server. This is done by assessing (and if necessary, attempting to re-establish) connectivity in a stepwise approach, top-down. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34_4.0_REQ_011, TS.34_4.2_REQ_011, TS.34_4.0_REQ_029.

The monolithic IoT Device Application SHALL NOT frequently initiate an application-driven reboot of the communication module/chipset. The IoT Devices SHALL retry connection requests to the IoT Service Platform with an exponentially increasing back-off period. In tiered IoT Devices, the embedded Service

Date Page 2021-08-23 10 (16)

Enablement Layer SHALL implement these requirements in the same way as for monolithic IoT Device Applications.

If the monolithic IoT Device detects that the IoT Service Platform is back online, it SHALL employ a randomized timer to trigger communication requests to the mobile network. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement.

Behavior when Coverage Lost (GPS, GLONASS, LAN, WAN)

When GNSS (GPS, GLONASS, BeiDou, Galileo) coverage is lost, the monolithic IoT Device Application SHALL NOT reboot the communication module/chipset supporting GNSS. The IoT Device Application SHOULD perform diagnostics, reboot the affected hardware element and send an alert to the IoT Server Application. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement these requirements in the same way as for monolithic IoT Device Applications.

When LAN or WAN coverage is lost, the monolithic IoT Device SHALL NOT reboot the IoT Device or communication module/chipset. The IoT Device Application SHALL retry scanning to acquire mobile network connectivity with an exponentially increasing back-off period. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement.

Behavior when Sensors / Actuators Malfunction

When in-built sensors or actuators malfunction, the monolithic IoT Device Application SHALL NOT reboot the communication module/chipset. The IoT Device Application SHOULD perform diagnostics, reboot the affected hardware element and send an alert to the IoT Server Application. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement these requirements in the same way as for monolithic IoT Device Applications.

Behavior when Sensor Alarms / Actuators Triggered

When in-built sensors or actuators are triggered, the monolithic IoT Device Application SHALL NOT reboot the communication module/chipset. The IoT Device Application SHOULD instead send an alert to the IoT Server Application. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement these requirements in the same way as for monolithic IoT Device Applications.

Behavior when Battery Power is Low or Power Failure Occurs

The monolithic IoT Device Application SHOULD send a notification to the IoT Service Platform with relevant information when there is an unexpected power outage or battery problem. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD comply to this requirement. Ref: TS.34 4.0 REQ 014, TS.34 4.2 REQ 014.

Behavior when Device Memory Full

When the monolithic IoT Device's memory is full, for example due to the amount of collected data or an unwanted memory leak, the IoT Device Application SHALL NOT reboot the communication module/chipset. The IoT Device Application SHOULD perform diagnostics, reboot the affected hardware element and send an alert to the IoT Server Application. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement this requirement in the same way as for monolithic IoT Device Applications.

Behavior when Communication Requests Fail

The monolithic IoT Device Application SHALL always handle situations when communication requests fail in a way that does not harm the mobile network. The mobile network may reject communication requests from the IoT Device with a 3GPPTM error cause code (refer to GSMA TS.34). When the IoT Device Application detects that its requests are rejected, it SHALL retry connection requests to the mobile network with an exponentially increasing back-off period. The IoT Device Application SHALL NOT start an application-driven reboot of the communication module/chipset, attempting to ignore or override the mobile network's decision. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement this

Date Page 2021-08-23 11 (16)

requirement in the same way as for monolithic IoT Device Applications. Additionally, the IoT Device Application SHALL always be prepared to handle situations when communication requests fail, when such failure is reported by the embedded Service Enablement Layer.

Communication requests from the monolithic IoT Device Application SHALL NOT be retried indefinitely – all requests must eventually time-out and be abandoned by the IoT Device Application. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34 4.0 REQ 011, TS.34 4.2 REQ 011, TS.34 4.1 REQ 002.

Behavior when Device-Originated SMS are Barred

When the monolithic IoT Device Application detects that its subscription for MO-SMS is barred by the mobile network, the IoT Device Application SHALL retry connection requests to the mobile network with an exponentially increasing back-off period. The IoT Device Application SHALL NOT start an application-driven reboot of the communication module/chipset. In tiered IoT Devices, the embedded Service Enablement Layer SHALL implement this requirement in the same way as for monolithic IoT Device Applications.

Reselection of Radio Access Technology Bearers

For mass deployments of IoT Devices (e.g. >10,000 units within the same mobile network), if the monolithic IoT Device supports more than one family of access technology (for example 3GPP™, WLAN) the IoT Device Application SHALL employ a randomized delay before switching to a different family of access technology. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34 4.0 REQ 027, TS.34 4.2 REQ 027.

The monolithic IoT Device Application SHALL implement a protection mechanism to prevent frequent "ping-pong" between these different technologies. This is done by limiting the frequency of reselection actions, with appropriate hysteresis mechanisms. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34 4.0 REQ 026, TS.34 4.2 REQ 026.

Handling Loss of Service on Roaming Network

The monolithic IoT Device Application SHALL always be prepared to recover lost end-to-end connectivity while camping on a roaming network. This is implemented with a top-down, staged recovery algorithm diagnosing each protocol layer. In case of failing to re-establish one layer, the algorithm initiates the recovery procedure on the following protocol level below. This may be done, for example, as follows:

- Step 1. Re-establishment of higher layer connectivity, e.g. VPN tunnels, SSH sessions, etc.,
- Step 2. Re-establishment of the PDN connectivity or PDP context,
- Step 3. Re-attach (data) to the network,
- Step 4. Re-triggering of a plain network selection,
- Step 5. Complete reboot of the device.

All re-establishment procedures SHALL be implemented in a reasonable way avoid excessive signaling to the network. This may include usage of randomized triggers and incremental, back-off retry mechanisms. Threshold and timer values may depend on the IoT Service's requirements. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement. Ref: TS.34_4.0_REQ_029, TS.34_4.2_REQ_029.

IPv4/v6 Dual Stack Support

The monolithic IoT Device Application SHALL support IPv4/v6 dual stack (PDN Type = IPv4v6) so that it can properly roam onto mobile networks having support for either IPv4 only or IPv6 only or dual stack only. In tiered IoT Devices, the embedded Service Enablement Layer SHALL comply to this requirement.

Date Page 2021-08-23 12 (16)

Device Reset to Factory Settings

The monolithic IoT Device Application SHOULD support a "reset to factory settings" via remote and local connection. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD comply to this requirement. Ref: TS.34 4.0 REQ 024, TS.34 4.2 REQ 024.

Device Time Resynchronization

The monolithic IoT Device Application SHOULD support time resynchronization via remote and local connection. In tiered IoT Devices, the embedded Service Enablement Layer SHOULD comply to this requirement. Ref: TS.34 4.0 REQ 025, TS.34 4.2 REQ 025.

PLMN Selection

The monolithic IoT Device Applications communicating over 3GPPTM Mobile IoT access bearers, such as NB-IoT and LTE-M, SHALL avoid manual PLMN selection when possible. It's also highly recommended to avoid using AT+COPS command when roaming and use AT+CFUN instead.

Avoidance of Spurious Behaviors

The monolithic IoT Device Applications SHOULD be engineered to not exhibit spurious (not-authentic) behavior on the network. As an example, the Device SHOULD NOT try to establish a data session on the network and acquire a new IP address after a data session has been already established for the same Device. If the Device can handle two or more APNs, this applies per APN.

Device Recovery

The monolithic IoT Device Applications SHALL implement a recovery method in case of unexpected behaviors such as a firmware failure or any similar event. An example of a recovery method is a watchdog timer that resets the Device when a specific condition is encountered. (Refer to Annex: "Device Recovery" Guidelines)

Over the Air (OTA) Upgrade

The monolithic IoT Device Application SHALL support OTA Upgrades to update the embedded firmware\software and a randomized approach for file download SHALL be implemented. OTA Upgrades for IoT Devices communicating over 3GPPTM LPWA radio access technologies, such as NB-IoT and LTE-M, need to consider the following points:

- Resume functionality SHALL be supported
- Incremental upgrades SHALL be supported
- OTA Upgrades over UDP SHALL be used when IoT Devices are communicating over 3GPP™
 NB-IoT radio access technology

Disabling Redundant Bands

The monolithic IoT Device Applications communicating with the IoT Server Application over 3GPPTM LPWA Mobile IoT access bearers, such as NB-IoT and LTE-M, SHALL disable redundant supported bands on the communication module that are not used by Telia. This helps fastening up PLMN and Cell Selection.

Auto Corrected APN

When communication module requests a wrong or a blank APN, Telia Network auto-corrects it and assigns it back to the device. The monolithic IoT Device Application SHOULD accept the auto-corrected APN without trying to detach and attach the communication module again to get the requested APN assigned.

Date Page 2021-08-23 13 (16)

Usage of the Embedded IP Stack

The monolithic IoT Device Application communicating with the IoT Server Application over 3GPP™ LPWA Mobile IoT access bearers, such as NB-IoT and LTE-M, SHALL use the embedded IP stack of the communication module. This guarantees a better compatible IoT implementation in terms of TCP timers and MTU size.

Report Essential Health Information

The monolithic IoT Device Application SHOULD support reporting some essential device and network health related information to IoT Service Platform. Some of the most important measurements would be battery level, signal strength and quality (e.g. in LTE: RSRP, RSSI, RSRQ, and SINR\SNR) and enhanced coverage level (EC) for LPWA.

V. Communication Module Requirements

GCF Certification

All communication modules implemented in IoT devices SHALL have a GCF certified. Non-certified communication module will not be allowed in any of Telia's or its partners mobile networks.

RAT Support

Communication module SHALL support at least one of the following Radio Access Technologies (RATs): LTE, LTE-M or NB-IoT

Multi-Operator Core Networks (MOCN)

Communication module SHALL follow MOCN network specification standards of the GERAN (GSM and GPRS) / WCDM (UMTS) / LTE / NB-IoT / LTE-M mobile network communication standards as specified in 3GPP.

Power Down Requirements

Communication module SHALL adhere to power-down procedures and ensures a complete detach and IMS de-registration, if applicable, from the network when it's powered down.

Firmware Over the Air (FOTA)

Communication module SHALL support FOTA. Firmware upgrades over LTE-M and NB-IoT SHOULD be performed as some sort of incremental FOTA where only the delta between the new and old firmware is downloaded and flashed.

PLMN Selection and Idle Mode Procedures

Communication module SHALL implement network search and cell selection\re-selection procedures as specified in 3GPP TS 23.122.

Data Over NAS (DoNAS)

NB-IoT Communication modules SHALL support DoNAS and attach to network using CP-CloT.

Extended T3412 (3GPP Rel-10)

LTE-M and NB-IoT Communication modules SHOULD support Extended T3412 and indicate it in MS Network Feature Support IE. Supporting this timer helps in reducing signalling load and extending device battery life.

Date Page 2021-08-23 14 (16)

EF-NASCONFIG (3GPP Rel-13)

LTE-M and NB-IoT Communication modules SHOULD support EF-NASCONFIG file located on the SIM card under the path ADF(USIM)/6FE8. Communication modules SHALL use the parameters in EF-NASCONFIG file to enable\disable NAS features as specified in 3GPP TS 24.368 in a way that takes precedence over NAS setting stored in device's non-volatile memory (NVM). If the file is not present, NAS settings stored in NVM SHALL be used.

Timer T3245 (3GPP Rel-10)

LTE-M and NB-IoT Communication modules SHALL support T3245 as specified in 3GPP TS 24.008 and 3GPP TS 24.301. When T3245 is enabled, communication module will clear FPLMN lists and sets USIM to valid for non-EPS and EPS service upon the expiry of the timer. Devices SHALL enable\disable T3245 timer according to the settings of *Timer T3245 Behaviour* leaf in EF-NASCONFIG file.

SIM Form Factor

Communication module SHALL support one of the standardized ETSI SIM form factors according to ETSI TS 102 221 (2FF, 3FF or 4FF) or ETSI TS 102 671 (MFF2).

USIM Application Toolkit

Communication module SHALL support the USIM application toolkit commands.

SIM-OTA

Communication module SHALL support SIM-OTA. The purpose is to secure that IoT devices can relay incoming SIM-OTA messages in a correct way to the SIM according to the current standard.

eSIM

eUICC profile download functionality prerequisites that eSIM capable Communication modules SHALL support BIP over HTTPS and Short Message Service (SMS). SMS is used to trigger the Device to set up a BIP session for a profile download.

LTE-M Requirements

LTE-M communication modules SHALL support the following features:

- Bands 3 and 20
- Combined attach for the support of SMS
- Intra and Inter Frequency Connected Mode Mobility
- Power Class 3 or 5 (Power Class 6 is not allowed)

NB-IoT Requirements

NB-IoT communication modules SHALL support the following features:

- Bands 3 and 20
- Combined attach for the support of SMS
- Intra and Inter Frequency Cell Reselection
- Non-Anchor Carrier
- Release Assistance Indication (RAI)
- Power Class 3 or 5 (Power Class 6 is not allowed)

Date Page 2021-08-23 15 (16)

VI. Customer's Obligations and Requirements

System Related Requirements

- If any authentication system resides in Customer's network and it is out of Telia's control, customer SHALL ensure that requests are handled and responded to in a timely manner. This SHALL apply to systems receiving payload from any Device(s) as well.
- Customer SHALL ensure that timeouts due to unacknowledged network requests and/or retransmissions are kept below one (1) percent of the total volume of traffic.
- Customer is not entitled to override the preferred roaming list (PLMN) on SIM Cards without Telia's prior written consent
- Customer is responsible for restarting any of its own equipment that was powered down or off as contemplated by this Agreement, for instance after a change of Service or troubleshooting.
- Customer SHALL secure the following between the remote Customer Product and Customer Central System:
 - o appropriate testing (including all future releases) of the Device to comply with the requirements stated above, as well as
 - o correct communication functionality (voice and/or SMS and/or data).

APN Configuration

Customers are responsible for the configuration of the APN in their Device:

- APN SHALL be configured in the Device by the Customer
- Customer SHALL be able to re-configure the APN in the Device

Testing of Devices and Applications

Customer SHALL at any time, upon Telia's request, provide Telia with Engineering Traceable Devices and applications with the relevant configuration for testing and troubleshooting purposes. Once the testing is over, Telia sends the Device back to Customer. Telia reserves the right to send a reference test device to site in cases where it becomes necessary to troubleshoot and establish a good network connectivity.

Security Requirements

It is the responsibility of Customer to ensure the following:

- Devices SHALL conform to industrial security requirements and best practices, e.g. GSMA's IoT Security Guidelines and the IoT Project recommendations from OWASP.
- Industrial security requirements and best practices SHALL be continuously monitored, and devices SHALL be adapted in a timely manner.
- Devices SHALL be able to receive software and firmware upgrades in a safe manner as described in GSMA IoT Security Guidelines.
- Devices and their services SHALL incorporate protection against impersonation attacks and replay attacks. Devices SHALL be also able to support protection mechanisms against misuse, cloning, replacement or security credentials theft. Further protection against Denial of Service (DoS) attacks SHALL be part of the solution.
- Devices that are directly accessible over the Internet SHALL be designed with that in mind.
 Typically, this includes reduced exposure to only needed network services/ports and making
 sure that all access is authenticated. Furthermore, the input received SHALL be validated to
 prevent buffer overrun attacks and the like.
- Customer SHALL be able to nominate a point of contact in case of a security related question needs to be addressed by Telia.

Customer's failure to comply with Security Requirements listed above constitutes ground for suspension of Service.

Date Page 2021-08-23 16 (16)

Regulatory and legal compliance

Customer SHALL ensure that its Devices always conform to current regulatory requirements of the countries in which the Device will be operational and to acquire any necessary certifications required by the regulatory bodies in the host countries, such as EMC, RED, SAR, FCC and other certifications. Customer SHALL also ensure that its Devices and applications comply with all applicable laws, including data privacy laws, advertising regulations (such as rules about cookies or "no-spam" laws) and the like.

Over the Air (OTA) Upgrades

Customer SHALL contact Telia's IoT Support before performing any OTA Upgrades for more than 10000 Devices. In the instances where an OTA Upgrade is required, a per customer approach and analysis will need to be carried out by Telia. This is to ensure a smooth upgrade for the customer and a manageable impact to the Telia network.

VII. Annex: Device Recovery Guidelines

This section sheds some light on how a recovery algorithm may be implemented in IoT Devices. It shouldn't be considered as a mandatory implementation requirement per se but more as a guideline and a recommendation. Customers may implement their recovery algorithms as they see fit for their IoT applications.

Download Device recovery guidelines here:

https://business.teliacompany.com/login/iot-connectivity-checklist

VIII. Annex: No Harm to Network Policies (LPWA)

Maximum Number of Connection Requests

- NB-IoT: 24 connection requests (Network Attach) / day / device (i.e. on average once per hour).
- LTE-M: 144 connection requests (Network Attach) / day / device (i.e. on average six times per hour).

Minimum T3412 Timer

Values shorter than 60mins will not be accepted.

Maximum Number of Daily Messages

- NB-IoT: 120 application messages / day / device (i.e. on average 5 messages per hour); no volume restrictions per message.
- LTE-M: 720 application messages / day / device (i.e. on average 30 messages per hour); no volume restrictions per message.

Maximum Volume of Data per Single Device

Please note: Maximum lifetime volume or pooling restrictions may be in place, limiting the customer's average monthly data volume.

- NB-IoT: 1 MB average / month / device; tariff-specific restrictions may occur.
- LTE-M: 500 MB average / month / device; tariff-specific restrictions may occur.

